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Abstract

A formal model for the study of on-line diagnosis is

introduced and used to investigate the diagnosis of unre-

stricted faults. Within this model a fault of a system S is

considered to be a transformation of S into another system S'

at some time r. The resulting faulty system is taken to be

the system which looks like S up to time T and like S' there-

after. Notions of fault toleranceand error are defined in terms

of the resulting system being able to mimic some desired be-

havior.as specified by a system S.. A notion of on-line

diagnosis is formulated which involves an external detector

and a maximum time delay within which every error caused by a

fault in a prescribed set must be detected.

The set of unrestricted faults of a system is defined to

be simply the set of all faults of that system. It is shown

that if a system is on-line diagnosable for the unrestricted

set of faults then the detector is at least as complex, in

terms of state set size, as the specification. Moreover, this

is true even if an arbitrarily large delay is allowed in the

diagnosis. The use of inverse systems for the diagnosis of

unrestricted faults is considered. A partial characterization

of those inverses which can be used for unrestricted fault

diagnosis is obtained.



I. INTRODUCTION

In many applications, especially those in which a computer

is being used to control some process in real-time, (e.g.,

telephone switching, flight control of an aircraft or space-

craft, etc.) it is desirable to constantly monitor the perfor-

mance of the system, as it is being used, to determine whether

the actual system is within tolerance of the intended system.

Informally, by "on-line diagnosis" we mean a monitoring process

of this type where the extent of the diagnosis depends on the

meaning of "within tolerance." Thus, for example, if being

within tolerance means having the same input-output behavior,

then on-line diagnosis becomes on-line -"detection." In the

special case where the implementation of on-line diagnosis is

completely internal to the system being diagnosed, it is referred

to as "self diagnosis" or "self checking."

The incorporation of special hardware for the purpose of

on-line diagnosis dates way back to the-relay computers developed

by Bell Laboratories in the early-to-mid 1940's, where biquinary

codes were used to dynamically check the operation of the

computer [1]. A more general look at codes for checking logical

operations was first taken by Peterson and Rabin in 1959 [2]

where they showed that combinational circuits can vary greatly

in their inherent on-line diagnosability. The use of coding

techniques in the design of self-checking circuits was further

explored by Carter and Schneider in 1968 [3] and by Anderson

in 1971 [4]. In addition, a number of special on-line diagnosis

methods have been considered which apply to specific hardware

subsystems such as adders, counters, etc. (see [5], for example).

Given this background of techniques that have been proposed

and, in many cases, used to improve the on-line diagnosability

of a system, the following question arises quite naturally.

With regard to any technique that might be employed, how complex

must the diagnosing system be as compared to the system being
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diagnosed, if the latter is to be on-line diagnosable in some

prescribed sense? To answer this question, one must, of

course, designate the class of systems considered, the-complexity

measure, and the precise meaning of on-line diagnosis. In a

first attempt, it appears reasonable to make these devices as

general as possible in order to establish a framework for more

incisive results that might follow.

Specifically, the systems we have chosen to consider are

those which are representable as "discrete-time" systems

when subjected to transient or permanent faults. Such systems

are generalizations of sequential machines and permit .structure

to vary as faults occur. As a measure of system complexity,

we have chosen the number of reachable internal states. This

measure reflects the memory capacity of a system and, without

further restrictions on system structure, it's the only measure

of structural complexity that has a reasonable interpretation.

Finally, the concept of on-line diagnosis considered requires

that any error caused by a fault be detected within some

maximum allowable time delay.

Section II of the paper is concerned with the formal

development of the notion of a discrete-time system and the

associated concepts of fault, result of a fault, and error.

Section III formalizes the above concept of on-line diagnosis

and establishes an answer to the question posed above; namely,

if no restrictions are placed on the potential faults of a

system S, then the complexity of a detector D must be at least

as great as that of S. Moreover, this result holds even when

the allowed time delay for error detection is arbitrarily large.

Section IV considers the on-line diagnosis of unrestricted faults

for systems which have (delayed) inverses, that is, systems

which are information lossless. Here it is shown that an in-

verse system can always be used for on-line diagnosis if it too

is information lossless. Although the lossless condition is

sufficient, it is shown further that there exist systems for

which a lossy inverse can also be used for on-line

diagnosis.
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II. FAULTS AND ERRORS IN DISCRETE-TIME SYSTEMS

.Informally, a discrete-time system is a causal, 
deter-.

ministic, finite-state system to which inputs (from a finite

set) are applied at discrete instants of time'and from which

states and outputs (from a finite set) are observed at discrete

instants of time. If, in addition, specific inputs are desig-

nated as "reset" inputs (used to initialize the system), then

discrete time systems can be formally defined as follows.

Definition 1: Relative to the time-base T = {...-l,0,l,...1,

a (resettable) discrete-time system (with finite input, output,

and reset alphabets) is a system

S = (I,Q,Z,6,X,R,p)

where

I is a finite nonempty set, the input alphabet

Q. is a finite nonempty set, the state set

Z is a. finite nonempty set, the output alphabet

6: QxIxT-- Q, the transition function

X: QxIxT--- Z, the output function

R is a finite nonempty set, the reset alphabet

p: R'T--->Q, the reset function.

The first five elements, I, Q, Z, 6, and X, of a discrete-

time system are the usual elements of a sequential machine but

with 6 and X generalized to account for possible variation of

structure with time. The action of a reset r c R is described

by p, the reset function, with the interpretation that if 
reset

r is applied at time t - 1 then the system will be in state

p(r,t) at time t. In the special case where S is time-invariant

we will adopt the usual terminology by referring to S as a

(resettable) sequential machine.
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A particular discrete-time system can be viewed as

a system which looks like some sequential machine S1 in one

time interval, like S2 in another interval, and so on (see

Fig. 1). Assuming familiarity with the concept of a sequen-

tial machine, with this view the more general concept of

discrete-time system is easily understood. Moreover, as will

be observed in the discussion that follows, discrete-time

systems suffice to represent the structure and behavior of- both

"fault-free" and "faulty" digital systems in an on-line diag-

nosis environment.

Formulation of an appropriate notion of behavior for

discrete-time systems follows directly from the usual behavioral

notions that have been considered for sequential machines.

Informally, if S is a discrete-time system, the behavior of

S for a reset r applied at time t is a function which maps an

input sequence x into the last output symbol that S would emit

given that it received x under the above conditions. More

formally, the behavior of S for (initial) condition (r,t)

(r s R, t e T) is the function

S: I+ ---> Z

where

ar,t () = (p (r,t), x,t) (2.1)

(3 denotes the natural extension of X to QxI+ xT.) The natural

extension of Br ,t to sequences is denoted by Br,t' that is,

^ + +
ar,t:

where

Br)t(ala2...a Br, t(al) r,t(ala 2 ) Br,t (ala2 ... an)
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It will also be convenient to define the behavior of S

in state q, that is, the function

: I xT ---> Z

where

8q (x,t) = T(q,x,t).

Given a discrete-time system S, the reachable part of S

is the set

P = {q E Qjq = 6(p(r,t),x,t)for some r £ R,t E T, and x E I*}.

(6 denotes the natural extension of 6 to QxI*xT.) S is reachable

if P = Q. S is reduced if for all q,q' : P, 8q = 8q, implies

q = q'. Concepts of simulation and realization that have been

considered for sequential machines (see [6], for example) also

extend easily to discrete-time systems. In particular, given

two systems S and S, S realizes S under .(g,h,k) if g: (I)+ - I +

is a semigroup homomorphism such that g'(I)cI, h: R --> R, and

k: Z' -> Z where Z'CZ such that for all r E R, and t E T

,t = kOh ( ),tog (2.2)

(where o denotes left composition of functions). A pictorial

representation of this notion is given in Fig. 2. .A. realizatiohn

concept is quite useful when considering questions of diagnos-

ability, for one often begins with a system specification S which

describes what the user wants but is not diagnosable. The

solution is to find another system S which is diagnosable and

can realize the behavior of S via the input encoding map g, the

reset encoding map h, and the output decoding map k.
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Given some discrete-time system S, let us now consider

how faults effect changes in system structure. In general, if

a fault occurs at some time T, S will be transformed into some

other system S' and if S is in state q just before. T then S'

is in state q' just after T. More formally, a fault of S is a

triple f = (S',T,e) where S' has the same input, output, and

reset alphabets as S, T e T, and e: Q -- Q'. The restriction

on the input, output, and reset alphabets is reasonable since

after the fault occurs the system will presumably have the

same external terminals. The function 6 describes the state transitions

that result when the fault occurs. Note that the interpretation

of fault here is one of effect, not cause. Thus, for

example, if S represents a switching network and some gate

output j becomes stuck-at- 1 at time T, the fault is represented

by the triple f = (S',T,6) where S'.represents the network,

as modified by a constant 1 at output j, and 6 describes how

this change affects the next state.

Given this interpretation, a formulation of the resulting

faulty system is straightforward. More precisely,

Definition 2: If f = (S',T,8) is a fault of S, the result off

is the system

S = (I,Q ,Z,6 ,X ,R,p
f )

where

Q = Q UQ'

6(q,a,t) if q e Q and t < T - 1

6 (q,a,t) = (6(q,a,t)) if q E Q and t = T - 1

6'(q,a,t) if q Q' and t > T
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fX(q,a,t) if q E Q and t < T
A (q,a,t) X'(q,a,t) if q E Q' and t > T

f (r,t) if t < T

p (r,t) =O e(p(r,t)) if t = T

p'(r,t) if t > T

(Arguments not specified in the above definitions may be

assigned arbitrary values.) A pictorial view of the result of

f is presented in Fig. 3.

Given the result Sf of some fault f, the behavior of S
f

for initial condition (r,t) (see (2.1)) can be conveniently

formulated as follows.

Theorem 1: Let S be a system and let f = (S',T,8) bea fault of S.

Then for each r e R, t c T, and x E I
+

Sr,t(x) if t + IxI < T

f (p(rt),yt)) (,T) if t+IxI> T and t<T where
6r,t(x) x=yz and lyj=i -t

8' (x) if t > T
r,t

(Ixj denotes the length of sequence x.)

The proof of Theorem 1 is a straightforward application

of the general definition of behavior (2.1) to the faulty

system Sf given by Definition 2. Its utility is that it provides

a formal means for comparing the behavior of a faulty system S

to that of the fault-free system S or to that of some original

specification S. In particular, we want to determine whether

the behavior of S is "within tolerance" of the specification

S. The latter concept can be formalized as follows.
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Let S be a reduced, reachable specification of a time-

invariant, discrete-time system (i.e., S is a sequential

machine) and let S be a sequential machine that realizes S

under the functions (g,h,k). (Our development at this point

could be generalized to include time-varying systems. However,

it seems reasonable to assume that the specification and

desired fault-free realization are time-invariant.) We can

assume further that g and h are onto since the only input and

reset symbols of concern in the realization S are those which

correspond to inputs and resets of S. Also, since S and S

are time-invariant, it suffices to describe their .behaviors

for resets at time 0. Accordingly, we will let Br and Br
denote the behaviors ,0 and 8 respectively.

Given the above assumptions, we will say that a faulty

system Sf is "within tolerance" of S or alternatively, that
f

the fault f is "tolerated" if,behavior.ally, S relates to S

in the same way that S relates to S. In other words, behavior-

ally, S and Sf can accomplish the same thing relative to S.

(Note that although S is presumed time-invariant, in general,

S will not be.) More formally, if f is a fault of machine S,

then f is tolerated if, for all r e R,

f

8r = koh(r)og.

Alternatively, since g and h are onto, it follows that f is

tolerated if and only if, for all r e R,

f
kor = ko .

A fault which is not tolerated is capable of causing

"errors" in the following sense. If r e R, x E I+ and y E Z+
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such that Ixl = IYI, the triple (rx,y) is an error if

where k denotes the homomorphic extension of k to Z, In

particular, if f is a fault, an error (r,x,y) is 
caused by f

if

A^f
a (x) = Y

that is, for reset r and input sequence x, S
f produces an output

that is in error relative to S. It follows immediately from

the definition that a fault f is tolerated if and only 
if no

errors are caused by f. Finally, since we will be interested

in the time when an error first occurs, we will say that an

error (r,ua,vb) (where r e R; u, v l ; a, b c I) is minimal

if (r,u,v) is not an error.

III. ON-LINE DIAGNOSIS

With respect to the concepts of fault and error developed

in the preceding section, let us now consider what we might

mean-by "on-line diagnosis." Let (S,F) be the machine S along

with the prescribed set of faults F of S. Let D be another

machine with the same reset alphabet as S and with input set

ZxI and let n be a nonnegative integer. Then
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Definition 3: (S,F) is (D,n)-diagnosable if

(i) D( (x), x]) = 0 for all r E R and x I and

(ii) if (r,x,y) is a minimal error caused by some f E F

then

D([r (xw) , xw]) 0. I x w l for all w E I* with w = n.
+  +

(If u = ZZ 2 ... z n  Z and v = ala2 . .a E then [u,vI
+

denotes the sequence (zlal)(z 2 ,a 2 )...(znan) e (Z x I) .)

Thus, the detector D observes the operation of S f(see Fig. 4)

and must make a decision , based on-this observation, as to whether an

error has occurred. Note that the fault-free realization S

and the detector are both time-invariant (i.e., machines),

and that the detector takes no part in the computation of S's

output. The two conditions of the above definition can be para-

phrased as:

(i) D responds negatively if no fault occurs, i.e., D gives

no false alarms; and

(ii) for all f e F, D responds positively within n time steps

of the occurrence of the first error caused by f.

Given this concept of on-line diagnosability, the investiga-

tion that follows will be concerned with the general case in which

the set of potential faults is "unrestricted." More precisely, the

set of unrestricted faults of machine S, denoted by U, is the set

U = {flf is a fault of S}. Note that this set of faults is truly

unrestricted for it is precisely the set of all possible faults of

the machine being diagnosed.

Aside from representing a."worst-case" fault environment,

there are certain practical reasons for considering U, at least

at the outset. In particular, as the scale of integrated circuit
technology becomes larger, it becomes more difficult to postulate

a suitably restricted class of faults such as the class of all
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"stuck-at" faults. Moreover, .although other failure models such

as bridging failures have been proposed and studied (see [7] and

[8] for example), little is known about the diagnosis of such

failures. In addition, intermittent and multiple failures are

also possible and are even more difficult to model. Finally, for

a given failure it may be impossible to determine the e function

of the fault caused by this failure. Thus fault sets which do

not restrict the fault mapping 6 are advantageous.

One important property of the set of unrestricted faults is

the relation between this fault set and the set of errors that

may be caused by faults in this set. Given any r eR, x e , and

y Z with jIx = yjl, there is a fault f E U such that f (x) = y.

Therefore faults in U can cause any possible erroneous behavior,

and for (S,U) to be (D,n)-diagnosable all of these possible

erroneous behaviors will have to be detected by D. Due to the

above observation it is clear that the output of Sf (the system

actually being observed by the detector) can give no information

about what the correct output should be.

It is a well known and obvious fact that if a system is

duplicated and both copies are run in parallel with the same

inputs, then, by dynamically comparing the outputs on the two

copies, any error which does.not appear simultaneously in both

copies will be immediately detected. Our view of duplication

is shown in Fig. 5. In this figure the detector D consists of

a copy of S along with a generalized Exclusive-OR gate whose

output is 0 if and only if its inputs are identical. Given such

a detector D, it is immediately clear that (S,U) is (D,0)-diagnosable.

It is also clear that by using suitable encoding and decoding

functions, unrestricted fault diagnosis can be achieved by comparing

the output of S with that of its reduced and reachable specifica-

tion S.
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An interesting question, the answer to which would tell

us something fundamental about the diagnosis of unrestricted

faults, is whether or not it is possible to do better than

duplication in the sense of achieving (D,n)-diagnosis of

(S,U) with a detector D which is less complex, in terms of

state set size, than the specification S. One reason to believe

that this may be possible is the observation that if S has an

inverse then this inverse may have fewer states than S and

yet a detector constructed using this inverse may be capable

of diagnosing the set of unrestricted faults of S (see Example 1).

However, the following 'result shows that for n = 0 it is impos-

sible to do any better than duplication in the sense described

above. First we state a simple lemma which is an immediate con-

sequence of the definition of realization (2.2).

Lemma 1: Let S and S be two machines such that S realizes

S under the triple (g,h,k) and S is reduced and reachable.

Then there exists a 1-1 function a from Q into P such that

for all q e Q, 8 = k (q)og.

Applying this lemma, we obtain the following basic result.

Theorem 2: If (S,U) is (D,O)-diagnosable, then the detector

D has at least as many states as the specification S of S.

Proof: Let (S,U) be (D,0)-diagnosable and assume, to the

contrary, that IQDI < IQI. By the above lemma, there are IQI

states in P, the reachable part of S, which all mimic different

states of S. Referring to Fig. 4, since IQDI < 1Qj there must

exist states ql' q2 e P and s E QD such that ko8ql 3 ko q 2 and

it is possible for S to be in ql or q2 while D is in s. Since

koql koS , there exists a sequence ua where u E I* and
q, q

a such tat k(ql (ua))j k(q (ua)) and if u 0 A then

kE(S (u)) = k(q2(u)). Since it is possible for S to be in ql

while D is in s,there exists rl E R and xl e I such that

6(P(rl), X1 ) = q and 6D(PD(rl), [Br(xl), xl) = s.
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+ +
Recall that given any re R, x E I , and y c Z with

Ixl = lyj, there is a fault f : U such that 8(x) = y. Let

f e U be a fault for which (xlua) = rl(x ) q2(ua). Since it

is known that k( ql(u)) = k(q (u)), it follows that
1q2

(rlx 1ua,r(xlua)) is a minimal error. Now (S,U) is (D,0)-
r I D f xujxuar

diagnosable implies BrD r1f (xua),x1ual) al Since no
r 1 D rl Also, since

false alarms may occur, rl rl:(xl),xl) = 0I. Also, since

it is possible for S to be in q2 while D is in s,

S([Sq2 (ua), ua]) = 0
l u a l . But

^D ^f D
B ([ra (xlua),(xlua) = rl l([ 2(ua),xlua])

^D D=a ([r (xl ,x I ])s ([S (ua),ua])
rl rl s q2

01x110 ual

oIX ua

This contradicts the assumption that (S,U) is.(D',n)-diagnosable.

Therefore IQDI > IQI, thus completing the proof.

Suppose now that we allow some arbitrary, but fixed,

n > 0 in the detection process. Can this additional time be

traded off for less detector complexity? Unfortunately, for

the unrestricted case, the answer is no. In fact, if (S,U)

is (D',n)-diagnosable then we can construct a detector D,

essentially by eliminating unnecessary states of D', such

that (S,U) is (D,0)-diagnosable.

Before stating this result formally, it is convenient to

establish the. -following important lemma.
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Lemma 2: If (S,U) is (D',n)-diagnosable then there exists a

detector D with no more states than D' such that (S,U) is

(D,n)-diagnosable and, for each qE QD ',D(Q' (z,a)) = 0 for

some (z,a) E Z x I.

Proof: Assume that (S,U) is (D',n)-diagnosable and construct

D from D' as follows:

1) Delete from the state table of D' any row corresponding

to a state q for which

0 {XD'(q, (z,a)) (z,a) E Z x I}

2) In the resulting table, replace every reference to

the deleted state with a reference to an arbitrary remaining

state, and set the corresponding output to 1.

3) Repeat steps 1) and 2) until no further deletions are

possible.

Since IQD', < m the above algorithm will terminate in a

finite number of iterations.

From the nature of the above construction it is clear

that IQDI I QD'I and for each q E QD x D(q, (z,a)) = 0 for

some (z,a) E Z xI. It only remains to be shown that (S,U) is

(D ,n)-diagnosable.

If the detector D' is in a state q for which

0 e {XD'(q, (z,a)) I(z,a) c Z x I}, then an error must have

occurred because if D' is in q then an error detection signal

will be emitted regardless of the input to D'. Hence this

error could be signaled whenever a transition to q is indicated,

and there would be no loss in diagnosis and no possibility for

a false alarm. Since all minimal errors which q signaled

would then be signaled before D' gotto state q', q' could be

eliminated. This is the essence of what is accomplished in
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steps 1) and 2). This elimination process is necessarily

iterative because step 2) may introduce new states to be

deleted. Since this construction is-diagnosis preserving, (S,U)

is (D,n)-diagnosable, thereby proving the lemma.

Theorem 3: If (S,U) is (D',n)-diagnosable then there exists

a detector D with no more states than D' such that (S,U) is

(D,0)-diagnosable.

Proof: Assume that (S,U) is (D',n)-diagnosable. By

Lemma 2, there exists a detector D with no more states than D'

such that (S,U) is (D,n)-diagnosable and, for each

q E QD X',(q, (z,a)) = 0, for some (z,a) e Z x I.

Claim: (S,U) is (D,0)-diagnosable.

Assume, to the contrary, that (S,U) is not (D,0)-

diagnosable. Using induction on the delay of the diagnosis,

we will deduce that (S,U) is not (D,m)-diagnosable for all

m > 0. This will establish the result for it contradicts

the hypothesis that (S,U) is (D,n)-diagnosable.

If m = 0, then by the above assumption, (S,U) is not (D,m)

diagnosable. Let us assume, then, that (S,U) is not (D,m)-diagnos-

able for some m > 0, and show that this implies (S,U) is (D,m+l)-

diagnosable. Since (S,U) is not (D,m)-diagnosable, there exists

a minimal error (r,x,y) caused by f E U and a sequence

w E I+ with Iwl = m such that D ([f (xw),xw]) = 0 x w l . Let
r r

D(PD(r),[Sr(xw),xw]) = s. Let (z,a) E Z x I such that

XD(s,(z,a)) = 0. By Lemma 2 we know that such a (z,a) exists.
Sf' f

Let f' be a fault for which 5 (xwa) = (xw)z. Then
f1 r rf

(rx,^ (x)) is a minimal error but r([r (xwa),xwa]) = 0 xwa l

Hence (S,U) is not (D,m+l)-diagnosable. Therefore, (S,U) is

not (D,0)-diagnosable implies (S,U) is not (D,m)-diagnosable

for all m > 0.

But we know that (S,U) is (D,n)-diagnosable. Hence

(S,U) is (D,0)-diagnosable. This establishes the result.
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Corollary 3.1: If ('S,U) is (D,n)-diagnosable then the

detector D has at least as many states as the specification-

S of S.

Proof: This is an immediate consequence of Theorems; 2 and 3.

IV. DIAGNOSIS USING INVERSE MACHINES

Let us now consider the use of inverse machines for

the diagnosis of unrestricted faults. An (I,n)-delay machine

(delay machine) is a machine Sn =(I,,I,6,A,R,p) such that if

a. e I, 1 < i < n+l, then

((a l ,- - . , a n ), an+ 1 ) (a 2 , ... , a n+l

and A((a l ,...,an), an 1) = al1

thus, an (I,n)-delay machine simply deplays its input for n

time steps. Stated more precisely, if Sn is an (I,n)-delay

machine then

n (a ,...,a ) = a
(a l , . . . , a n ) n+l' an+m  m

Let S and S be two machines such that R = R and

Z = I Then S is an (n-delayed)inverse of S if there

exists an (I,n)-delay machine Sn with reset alphabet R such

that for all r E R and x E I+
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r r WrW

Machines for which inverses exist can be easily

characterized. Intuitively, such machines lose no information

as they transform input sequences into output sequences. A

machine S is information lossless of delay d if for all

r R and ala2  .a n , blb2 ... b I (ai,bi  I, 1 < i < n)

8r(ala2 ... an) r= (blb2.. bn) implies a = b i

for 1 < i < n-d.

The basic relationship between information losslessness

and inverses is given by the following theorem (see L10], for example).

Theorem 4: S has an n-delayed inverse if and only if S is

information lossless of delay n.

Information lossless machines and inverse machines were

first introduced by Huffman [9]. He devised a test for infor-

mation losslessness and for the existence of inverses. It

should be pointed out that our definition of these notions are

oriented towards their use in diagnosis and that they vary

slightly from Huffman's definitions.

Even [10] later devised a better means of determining

information losslessness and he presented two means for

obtaining .inverses of information lossless machines. Kohavi

and Lavallee [11] have shown that any machine can be realized

by an information lossless machine.

We now state the basic result relating the use of lossless

inverses with the diagnosis of unrestricted faults.

Theorem 5: Let S be a lossless machine and let S be an

n-delayed inverse of S. Let D be constructed from S, the
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(I,n)-delay machine which demonstrates that S is an n-delayed

inverse of S, and an Exclusive-OR gate as shown in Fig. 6.

If S is lossless of delay d then (S,U) is (D,d)-diagnosable.

Proof: Since ar(Br(x)) = Br(x), there will be no false alarms.

Let (r,x,y) be a minimal error caused by a fault f E U.

Then f (x) = 8 (x). Let.w E I* with Iwl = d. Since S is
r r

lossless of delay d, Br ((xw))# r ( r(xw)). The Exclusive-OR

gate will detect this inequality, and hence the minimal error

will be detected within d time steps of its occurrence.

Therefore, (S,U) is (D,d)-diagnosable.

Example 1: Consider the reduced and reachable machines S1
and S1 given by the state tables in Fig. 7 and Fig. 8. The

last column in these state tables specifies the reset alphabet

and function. S1 is a 2-delayed inverse of S1 and S1 is

itself information lossless of delay 2. Thus a detector D 1
for which (S1 ,U) is (D1 ,2)-diagnosable can be constructed

using the inverse S1 of SI.

It is interesting to note that although S1 has fewer

states than Si, D1 has--more states -than S1 - Thi-s is because

there is an (I1,2)-delay machine in D1, in addition to the

inverse Sl. It is also worth pointing out that the delay in diagnosis

using an inverse machine is not the delay of losslessness of the

machine being diagnosed but rather of its inverse. Thus an

n-delayed inverse can be used to achieve diagnosis without

delay if it is lossless of delay 0.

The following example shows that the converse of Theorem 5

does'not hold. Namely, it is possible to diagnose the

unrestricted faults of a machine using an inverse which is not

lossless. However, not all inverses can be used for the diag-

nosis of unrestricted faults. The complete characterization

of inverses which can be used for unrestricted fault diagnosis

is still an open problem.
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Example 2: Consider the reduced and reachable machines S2
and S2 given by the state tables in Fig. 8 and Fig. 9.

S2 is a 0-delayed inverse of S2 and it can be used to construct

a detector D2 such that (S21U) is (D2 ,0)-diagnosable. However,

S2 is not lossless.

In conclusion, it is interesting to note that results

established in this and the preceding section have something to

say about lossless machines, per se. Let S be reduced, reachable,

and lossless of delay d machine. Let S be a lossless inverse of S.

We have seen in Example 1 that such an inverse can have fewer states

than the machine of which it is an inverse. In the following result

we will give a lower bound on the state set size of S in terms of

state set size of S, the delay d of S, and the input alphabet size

of S. This result, which deals only with lossless and inverse

machines is proved using Corollary 3.1 and Theorem 5, results

concerning the diagnosis of unrestricted faults.

Theorem 6: Let S be reduced, reachable, and lossless of

delay d. Let S be a lossless d-delayed inverse of S. Then

iId

Proof: Consider S and S in the configuration of Fig. 6.

Since S is lossless, by Theorem 5, (S,U) is (D,n)-diagnosable

for some n. Now by Corollary 3.1 IQI < IQDI. Since

QD = i  Id, IQDI d l II d

Thus

IQI <  1;511II d  or I <-" iIld-
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0 1

a e/O f/0

b a/l b/1

c a/0 b/O

d e/l f/l

e a/0 c/l

f d/l b/0

Fig. 7
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1 0

A C/0 D/1

B D/O C/1

C A/0 B/O

D C/1 D/1

Fig. 8



-30-

Q2 0 1 R2

a b/0 d/3 r

b c/l a/0

c d/2 b/1

d a/3 c/2

Fig. 9
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2
Q 0 1 2 3 R

A B/O B/2 B/2 D/1

B A/1 C/O A/2 A/2

C D/2 B/1 D/O D/2

D C/2 C/2 C/1 A/0

Fig. 10
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FIGURE CAPTIONS

Fig. 1. A discrete-time system.

Fig. 2. S realizes S under (g,h,k).

Fig. 3. The result Sf of fault f = (S',T,O-) of S.

Fig. 4. Diagnosis of (S,F) using the detector D.

Fig. 5. Diagnosis via duplication in the detector.

Fig. 6. Diagnosis using an inverse system.

Fig. 7. State table of S .

Fig. 8. State table of S1.

Fig. 9. State table of S 2.

Fig. 10. State table of 2'


